A Novel Soybean Intrinsic Protein Gene, GmTIP2;3, Involved in Responding to Osmotic Stress

نویسندگان

  • Dayong Zhang
  • Jinfeng Tong
  • Xiaolan He
  • Zhaolong Xu
  • Ling Xu
  • Peipei Wei
  • Yihong Huang
  • Marian Brestic
  • Hongxiang Ma
  • Hongbo Shao
چکیده

Water is essential for plant growth and development. Water deficiency leads to loss of yield and decreased crop quality. To understand water transport mechanisms in plants, we cloned and characterized a novel tonoplast intrinsic protein (TIP) gene from soybean with the highest similarity to TIP2-type from other plants, and thus designated GmTIP2;3. The protein sequence contains two conserved NPA motifs and six transmembrane domains. The expression analysis indicated that this gene was constitutively expressed in all detected tissues, with higher levels in the root, stem and pod, and the accumulation of GmTIP2;3 transcript showed a significant response to osmotic stresses, including 20% PEG6000 (polyethylene glycol) and 100 μM ABA (abscisic acid) treatments. The promoter-GUS (glucuronidase) activity analysis suggested that GmTIP2;3 was also expressed in the root, stem, and leaf, and preferentially expressed in the stele of root and stem, and the core promoter region was 1000 bp in length, located upstream of the ATG start codon. The GUS tissue and induced expression observations were consistent with the findings in soybean. In addition, subcellular localization showed that GmTIP2;3 was a plasma membrane-localized protein. Yeast heterologous expression revealed that GmTIP2;3 could improve tolerance to osmotic stress in yeast cells. Integrating these results, GmTIP2;3 might play an important role in response to osmotic stress in plants.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In silico identification of known osmotic stress responsive genes from Arabidopsis in soybean and Medicago

Plants experience various environmental stresses, but tolerance to these adverse conditions is a very complex phenomenon. The present research aimed to evaluate a set of genes involved in osmotic response, comparing soybean and medicago with the well-described Arabidopsis thaliana model plant. Based on 103 Arabidopsis proteins from 27 categories of osmotic stress response, comparative analyses ...

متن کامل

A Novel Transcription Factor, ERD15 (Early Responsive to Dehydration 15), Connects Endoplasmic Reticulum Stress with an Osmotic Stress-induced Cell Death Signal*

As in all other eukaryotic organisms, endoplasmic reticulum (ER) stress triggers the evolutionarily conserved unfolded protein response in soybean, but it also communicates with other adaptive signaling responses, such as osmotic stress-induced and ER stress-induced programmed cell death. These two signaling pathways converge at the level of gene transcription to activate an integrated cascade ...

متن کامل

Monitoring Response of a Few bZip Transcription Factors in Response to Osmotic Stress in Sunflower

Background: Sunflower (Helianthus annuus L.) is one of the important vegetable oil supplies in the world and in Iran, as well. It is classified as a drought semi-tolerant crop; however, its yield is adversely affected by drought stress. Understanding the initial events in sensing stress and the related physiologic and biochemical events thereafter, is crucial in designing droug...

متن کامل

The Wheat E Subunit of V-Type H+-ATPase Is Involved in the Plant Response to Osmotic Stress

The vacuolar type H+-ATPase (V-type H+-ATPase) plays important roles in establishing an electrochemical H+-gradient across tonoplast, energizing Na+ sequestration into the central vacuole, and enhancing salt stress tolerance in plants. In this paper, a putative E subunit of the V-type H+-ATPase gene, W36 was isolated from stress-induced wheat de novo transcriptome sequencing combining with 5'-R...

متن کامل

Proline accumulation and osmotic stress: an overview of P5CS gene in plants

Under osmotic stresses, proline accumulation is an important response of plants to these conditions. Proline is a compatible osmolyte which affects many cellular and molecular aspects of plant in both normal and stressful situations. Proline is shown to be involved in plant development in normal condition and in conferring resistance to plant under biotic and abiotic stresses. Therefore, many s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015